Thursday, September 13, 2007

Breakthroughs in Stem Cell Research

Science Daily has an article today detailing advances in Mesenchymal stem cell research, a type of stem cell research which does not result in the destruction of a human embryo. From the article:
They then investigated the properties of the MSC to discover whether they really were stem cells, capable of differentiating into a variety of different cell types. They found the cells were able to produce clones to form colonies of new cells at a rate that was 15 times greater than produced by the other endometrial cells. Furthermore, the MSC were able to differentiate into fat, bone, cartilage and smooth muscle cells in the culture dish. The MSC also appeared to be located around blood vessels in the endometrium (perivascular region).

Dr Gargett, a senior scientist at the Centre for Women's Health Research, Monash Institute of Medical Research, Monash University, Victoria, Australia, explained: "Colony-forming ability is a property of adult stem cells, as is the ability to differentiate into different cell types. The fact that the cells expressing the two markers were located in the perivascular region strengthens our case that we have isolated mesenchymal stem cells, because mesenchymal stem cells from bone marrow and fat are found around blood vessels too. It also gives us clues as to how they might function in repairing and regenerating new endometrium each month."

This is the first time that researchers have been able to use markers to isolate MSC from the endometrium and also the first study to show that the properties of these cells mean they are highly likely to be stem cells.

In related news, scientists at UCSF have reprogrammed mouse cells into their embryonic state which could revolutionize stem cell research:
Scientists are interested in reprogramming because of its potential for developing human embryonic stem cells that contain the genetic makeup of individual patients. In theory, any patient's cell, say, a skin cell, could be reprogrammed. If the resulting embryonic stem cell could then be prompted in the culture dish to specialize into one of the various cell types of the body, such as of the heart, lung and brain, the resulting cells could provide the starting point for a host of clinical-research strategies.


Post a Comment

Subscribe to Post Comments [Atom]

<< Home